
Build modern JavaScript 
applications on AWS

cloud native, simplicity, high availability, scalability



Show of hands 👋



Ivan Barlog

GitHub: ivanbarlog
email: ivan@barlog.sk
LinkedIn: ivan-barlog

AWS Solutions architect @ BeeSolve

Fullstack TypeScript developer

AWS certified Solutions Architect

https://github.com/ivanbarlog
mailto:ivan@barlog.sk


Use case: Group Expense with Ease

- personal hobby project

- inspired by SplitWise (splitwise.com)

- free of charge

- no ads, no tracking

- simplified - just basic features

- assumes you like your friends - splitting expenses equally

- in production but not finished
build with ❤ by



group-expense-with-ease.com



Code stack

- Bun - TypeScript runtime, bundler and package manager

- React + TanStack Router - frontend rendering and routing

- tRPC + TanStack Query - API communication + state management

- AWS SDK

- Valibot

- AWS CDK



Infrastructure stack

- AWS native services - no Kubernetes, no abstractions

- Lambda - compute

- DynamoDB - NoSQL key-value store

- HTTP API Gateway + Lambda Authorizer

- CloudFront

- SQS

- SES

- S3



Authentication and authorization

- custom solution

- cookie based authorization #use-the-platform

- __Host- cookies

- HTTP API Gateway + Lambda authorizer

https://developer.mozilla.org/en-US/docs/Web/Security/Practical_implementation_guides/Cookies




Asynchronous tasks with SQS

- decoupling

- quick response to user

- retry on failure

- buffering

- dead letter queue (DLQ)





Local development with Bun

- bundling React out-of-box - just import your html file

- native fetch API - Request/Response web standard

- easy local HTTPS with devcert

- HMR (hot module replacement) and everything

- it just works

- 1 file setup



Relations in NoSQL key-value store

- no schema enforcement

- no foreign keys enforcement

- denormalize your data

- logic and schema validation 

is in your application (valibot)

- transactions vs streams

- great for OLTP not so great for OLAP 

(but possible to some extent)



1 user will do 100 requests per day when active

1 group is active in average for 7-14 days

1 user will use application in average 5-10 times (active groups) a year

10 active groups * 14 days * 100 requests/day ~ 14k requests per year

14k / 12 months ~ 1200 requests per month

Infrastructure price - assumptions



AWS Pricing Calculator

Infrastructure price - estimate for 1k active users

https://calculator.aws/#/estimate?id=fed15dc5f11dca545673b67c7d0597878e7039ce


Maintenance

- try to have as little dependencies as possible

- build for your future self not for the computer

- build on latest runtimes

- monitor security updates and runtime support



Go build something!

…and maybe try
group-expense-with-ease.com


