Serverless updates from
AWS re:lnvent 2025

VY Show of hands

-

Yy
W

\ al

Usman Khalid

He/His/Him
Head of Serverless Compute

linkedin.com/in/ahmedusmankhalid/

The biggest secret of Serverless

.(and many other serverless services)

Hundreds of thousands of
EC2 instances under-the-hood

hundreds of thousands of servers.
B e

aws
~

What actually is serverless

Managed by AWS Pricing model
- management of servers - pay per request
- management of runtimes - pay per usage
- scaling - pay per duration
- load balancing - scalingto 0
- request routing - on demand pricing
- patching

‘I don’t want to manage my own cluster - that’s what AWS is for.”

AWS serverless

Today’s focus: E

- AWS Lambda
- AWS ECS

l i
- DynamoDB & DSQL I.'. r

E ||
a full list of

AWS serverless services

AWS Lambda

- FaaS (Function as a Service)

- various runtimes (official and unofficial)
- Docker lambda, Lambda Web Adapter
- 128MB - 10 240MB RAM, 1 - 6 vCPU
- 15 minutes timeout

- rapid auto scaling

- fully managed

- Event Source Mapping (ESM)

Lambda Managed Instances (LMlI)

- pick underlying EC2 instance type

- fully managed

- same model as Lambda (no need to refactor/re-architect)

- great for steady and CPU heavy workloads (for unpredictable use standard Lambda)
- multi-concurrency with less cold starts

- you pay for EC2 + 15% management overhead

- supports Saving plans and Reserved Instances

address compute choice, cost and cold starts limitations

Lambda Managed Instances (LMlI)

1. create Capacity provider (optionally select instance types)
2. associate your lambda function with capacity provider (adjust memory/cpu ratio)
3. deploy your function

Publish Function

Version Active

Function |

Time l Pending .'
B L e ————

Standard Lambda &~ Becenv [SNIRIE
Invoke

Invoke

Warm Invoke
Invoke 3

| | | LMI multi-concurrency 4

= H
Exec env 1 'L_lﬁl_

O 00 13 o O

import §{ App, Stack } from "aws-cdk-1ib";
import { SecurityGroup, Vpc % from "aws-cdk-lib/aws-ec2";
import {
CapacityProvider,
ScalingOptions,
TargetTrackingScalingPolicy,
+ from "aws-cdk-lib/aws-lambda";

const stack = new Stack(new App(), "MyStack");
const vpc = new Vpc(stack, "MyVpc");

const securityGroup = new SecurityGroup(stack, "SecurityGroup", { vpc });

const capacityProvider = new CapacityProvider(stack, "MyCapacityProvider", {

subnets: vpc.privateSubnets,

securityGroups: [securityGroup],

scalingOptions: ScalingOptions.manual ([
TargetTrackingScalingPolicy.cpuUtilization(70),

1),

) architectures? (property) CapacityProviderProps.architectures?

capacityProviderName? (property) CapacityProviderProps.capacit
instanceTypeFilter? (property) CapacityProviderProps.instancel
kmsKey? (property) CapacityProviderProps.kmsKey?: IKey | undet
maxVCpuCount? (property) CapacityProviderProps.maxVCpuCount?:
operatorRole? (property) CapacityProviderProps.operatorRole?:

The instruction set architecture required for compute instances.
Only one architecture can be specified per capacity provider.

@default

- No architecture constraints specified

24
25
26
27
28
29
30
31
32
33
34
35
36

const lambda = new NodejsFunction(stack, "MylLambda", {
entry: "handler.js",
runtime: Runtime.NODEJS_24_X,
architecture: Architecture.ARM_64,
memorySize: 1024,

3

capacityProvider.addFunction(lambda, §
executionEnvironmentMemoryGiBPexrVCpu: 4,
perExecutionEnvironmentMaxConcurrency: 20,

latestPublishedScalingConfig? (property) Capa rovider The scaling options that are applied to the SLATEST.PUBLISHED
publishTolLatestPublished? (property) CapacityProviderFunctionC Vversion.
@default

B

- No scaling limitations are applied to the
$LATEST.PUBLISHED version.

Lambda: Durable Functions

- workflow orchestration within single AWS Lambda
- powerful SDK (Node.js and Python, more are coming soon)

- Yyou don’t pay for waiting (up to 1 year execution time)

- checkpoints and replays

- similar to Step Functions

address timeout and orchestration limitations

O 0 900 U1 B W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

import { Duration } from '../../core';
/%%
* Configuration for durable functions.
*
* Lambda durable functions allow for long-running executions with persistent state.
*/
export interface DurableConfig {
VESS
% The amount of time that Lambda allows a durable function to run before stopping it.
*
* Must be between 1 and 31,622,400 seconds (366 days).
*/
readonly executionTimeout: Duration;
[%

The number of days after a durable execution is closed that Lambda retains its history.
Must be between 1 and 90 days.

*
*
*
*
* The underlying configuration is expressed in whole numbers of days. Providing a Duration that
* does not represent a whole number of days will result in a runtime or deployment erroxr.

*

*

@default Duration.days(14)
*/

readonly retentionPeriod?: Duration;

Durable Functions demo - what I've learned

1. problems with permissions
2. old SDKin Node.js runtime
3. permissions setup

Durable operations (3) o

‘ Q Filter by attributes or search by keyword

Name v | status

v & wait-for-extern...

£ eab6cO6C...

oo 98c6f2c228...

@ Succeeded

© Succeeded

@ Succeeded

SubType ¥ | Timeline |
WaitForca... []
Callback []

Step an

Start a |

Jan 27, 2026 at 14:45:19.309
(UTC+01:00)

Jan 27, 2026 at 14:45:19.309
(UTC+01:00)

Jan 27, 2026 at 14:45:19.377
(UTC+01:00)

End v |

Jan 27, 2026 at 14:45:22.316
(UTC+01:00)

Jan 27, 2026 at 14:45:21.044
(UTC+01:00)

Jan 27, 2026 at 14:45:21.106
(UTC+01:00)

public gist
with demo code

Duration ¥ Re... ¥

3secs 7ms -

Step-Functions vs. Durable functions

Choosing a service

Use to orchestrate across
AWS services

If you want a visual builder
experience

Never want to manage or
patch

Use when orchestrating at the
application level

If you want to use your favorite
programming language

Don’t mind updating your
functions when needed

Step-Functions vs. Durable functions - Eric Johnson

CNS380 API313
Durable Functions StepFunctions

AWS Lambda - worth mentioning

- public Lambda Roadmap on Github

- Tenant Isolation (pre:invent)

- support for Egress-only Internet Gateway (1pv6 only)

- StepFunctions JSONata support (iightweight transformations without Lambda)

O =2 Researching 40 O % WorkingOnlit 6 O =, Coming Soon 4 O & Developer Preview 0 O 4 Shipped 21
New item Actively in development Planned releases This item is in preview This has been completed
O aws-lambda-roadmap #19 = O aws-lambda-roadmap #30 O O aws-lambda-roadmap #18 @ aws-lambda-roadmap #27
Enable developers to augment AWS SAM and Flexibility to set block function create and Recursive loop detection and recursive loop Lambda managed runtime for .NET 10
SAM CLI capabilities ("AWS SAM Plugins") update date for deprecated Lambda managed detection APIs in all commercial AWS Regions
runtimes

© aws-lambda-roadmap #15
(® aws-lambda-roadmap #20 (© aws-lambda-roadmap #49

Lambda managed runtime for Node.js 24
OpenTelemetry (OTel) support © aws-lambda-roadmap #32 Enhanced observability (CloudWatch Logs and
JSON-based Resource-based Policies

metrics) for Kafka event source mappings

_ (ESM) © aws-lambda-roadmap #4
© aws-lambda-roadmap #23 - Provisioned Mode for Kafka event source
AWS SAM support for APl Gateway WebSocket © aws-lambda-roadmap #33 mappings (ESMs)

Block public access for functions [Resource © aws-lambda-roadmap #52

level] Cross-account access for DynamoDB Streams
O aws-lambda-roadmap #29 0

@ aws-lambda-roadmap #1

Elastic Container Service (ECS)

native container orchestration service

- compute service - Fargate (serverless), EC2
- no control plane to manage

- blue/green deployments

- services and tasks

- pay as go model for used resources

- used for long running (15m+) serverless tasks before Durable Functions
- various deployment options (CDK, CloudFormation, AWS Copilot)

ECS Managed Instances (CNS342)

simplicity of Fargate with control of EC2

- optional selection of instance types

- instances deployed to customer account

- fully managed by AWS

- ~2w retention lifecycle of instances

- cost optimized

- new capacity provider for EC2 Managed Instance

address Fargate flexibility

DynamoDB

- schemaless NoSQL key-value store
- highly available, scalable,
fully managed, serverless storage

- strong consistency and eventual consistency modes
(both regional and multi-regional)

“‘With DynamoDB, you are the query planner.”
- Alex DeBrie at DynamoDB Day 2025

DynamoDB - multi-attribute composite keys

- global secondary index (GSI) support
- up to 8 attributes in key
- up to 20 GSI per table (+5Lsl)

- no more “country#state#province#city” nonsense

- still works in hierarchy (eg. you need to query from left to right without skipping)
- no table primary key support yet

Aurora DSQL

- distributed SQL database (postgres compatible)

- fuIIy managed, scalable, serverless (super simple to create and use)

- for those who love their SQL

- no foreign keys constraints support

- cross-region strong consistency by default (everything runs in transaction)
optimistic concurrency control (OCC) (DAT455 - A Tale of Two Transactions)

if you have time watch deep dive on architecture

Local development

- AWS toolkit for Visual Studio Code

- LocalStack support (dockerized AWS simulator)
- remote debugging support

- Console to IDE (start in console move to VSCode)

o000 o

RUN AND DE D No Configurv 3 % lambda_function.py X

VARIABLES & lambda_function.py

Locals

Remote invoke configuration

lambda_handler(ev

Remote Invoke Function Name: hello-python
Globals

print(msg) msg = 'Helllllooooccooo!lftit!! Resource ARN
T

: 200, Region

son. dumps { "Hel ambda Runtime

}
Remote debugging Remove Debug Setup

re:Watch unofficial - AWS re:Invent Video Library

big thanks to re:Watch playlist
Martin Damovsky Serverless

lvan Barlog

AWS Solutions Architect

Github ivanbarlog

Email ivan@barlog.sk

Web barlog.sk
beesolve.com

LinkedIn ivan-barlog

aws
certified

Solutions
Architect

Associa te

< BeeSolve

Go build
something!

http://github.com/ivanbarlog
mailto:ivan@barlog.sk
http://barlog.sk
http://beesolve.com
https://www.linkedin.com/in/ivan-barlog/

